Bridging particle and nuclear physics for $0\nu\beta\beta$ with EFTs

Emanuele Mereghetti

RF Town Hall Meeting October 2, 2020

Bridging particle and nuclear physics for neutrinoless double beta decay with EFTs

Authors

Vincenzo Cirigliano (Los Alamos National Laboratory), cirigliano@lanl.gov
Zohreh Davoudi (University of Maryland), davoudi@umd.edu
Wouter Dekens (UC San Diego), wdekens@ucsd.edu
Jordy de Vries (UMass Amherst), jdevries@umass.edu
Jonathan Engel (UNC Chapel Hill), engelj@physics.unc.edu
Xu Feng (Beijing), xu.feng@pku.edu.cn
Michael L. Graesser (Los Alamos National Laboratory), mgraesser@lanl.gov
Luchang Jin (UConn), luchang.jin@uconn.edu
Emanuele Mereghetti (Los Alamos National Laboratory), emereghetti@lanl.gov
Amy Nicholson (UNC Chapel Hill), annichol@email.unc.edu
Saori Pastore (Washington University St. Louis), saori@wustl.edu
Michael Ramsey-Musolf (UMass Amherst and Shanghai), mjrm@physics.umass.edu
Ubirajara van Kolck (Arizona and Orsay), vankolck@ipno.in2p3.fr
Andre Walker-Loud (Lawrence Berkelev National Laboratory), walkloud@bl.gov

link to LOI

Introduction

 $0\nu\beta\beta$ is the most sensitive probe of lepton number violation (LNV)

1. LNV originates at very high scales direct connection between ν oscillations and $0\nu\beta\beta$

Introduction

 $0\nu\beta\beta$ is the most sensitive probe of lepton number violation (LNV)

1. LNV originates at very high scales direct connection between ν oscillations and $0\nu\beta\beta$ clear interpretative framework and goals

Introduction

 $0\nu\beta\beta$ is the most sensitive probe of lepton number violation (LNV)

- 2. LNV at intermediate scales $0\nu\beta\beta$ is mediated by new particles, accessible at colliders?
- 3. very light and weakly coupled new physics

general framework to interpret $0\nu\beta\beta$ exp.? with controlled uncertainties ?

Effective Field Theories approach to LNV

$0\nu\beta\beta$ and high-energy physics

G. Li, M. Ramsey-Musolf, J. C. Vasquez, '20

Q1: What is the connection between $0\nu\beta\beta$ and LNV observables at collider experiments?

ATLAS, CMS, FASER, EIC, ShIP, MATHUSLA, ...

What is the best strategy to explore this connection?
 SMEFT, simplified models, UV complete models?

$0\nu\beta\beta$ and high-energy physics

A. Boyarsky, et al. '18.

- Q2: What are the $0\nu\beta\beta$ constraints on models with ν_R in the KeV-GeV mass range relevant to low-scale leptogenesis scenarios?
 - How are such scenarios affected by new ν_R interactions at the TeV scale?

From quark to nucleons

- Q3: matching to hadronic EFTs involves non-perturbative parameters (LECs).
 - long-range components well determined, for both light ν exchange and TeV scale LNV
 - short-range components appear at LO, currently undetermined

need first principle extraction

• pion matrix elements under control

X.-Y. Tuo, X. Feng and L.-C. Jin, '19, W. Detmold and D. Murphy, '20

• can we control NN matrix elements?

From quark to nucleons

W. Detmold and D. Murphy, '20

Q3: matching to hadronic EFTs involves non-perturbative parameters (LECs).

- long-range components well determined, for both light ν exchange and TeV scale LNV
- short-range components appear at LO, currently undetermined

need first principle extraction

• pion matrix elements under control

X.-Y. Tuo, X. Feng and L.-C. Jin, '19, W. Detmold and D. Murphy, '20

• can we control NN matrix elements?

From few-body to many-body

S. J. Novario, P. Gysbers, J. Engel, G. Hagen, '20

A. Belley, C. G. Payne, S. R. Stroberg, T. Miyagi, J. D. Holt, '20

- first *ab initio* calculations in $0\nu\beta\beta$ candidates
- coupled-cluster calculation of $^{48}\text{Ca} \rightarrow ^{48}\text{Ti}$
- in medium similarity ren. group (IMSRG) for ⁴⁸Ca, ⁷⁶Ge and ⁸²Se
- Q4: Do many-body correlations preserve the EFT hierarchy of the two-body transition operators?

Conclusion

What will you work on between now and Snowmass, and what is your schedule for developing a contributed paper?

- · contributed paper by March/April,
- summarize achievements across the fields of particle physics, lattice QCD, EFTs and many-body methods,
- outline multi-year research plan for the theory of $0\nu\beta\beta$

What common data sets, joint efforts, etc. do you need?

joint effort between particle physics, lattice and EFTs

What would you like to come out of the Snowmass process?

• support for a theory initiative to coordinate high-energy physics (neutrino mass models, leptogenesis), LNV studies at colliders & lattice QCD and EFT for $0\nu\beta\beta$